MODULE 4.1

Competition

Download

The text’s website has available for download for various system dynamics tools the
file sharkCompetition, which contains a submodel for this module, available for

download for various system dynamics tools.

Community Relations

In any population of organisms, the individuals are interacting with each other and
[ with their environment. Populations, which are made up of only one species, are also
< interacting with other species in a particular area in what we term a community.
These interactions influence the composition and dynamics of the community
: through time. Some of these interactions are robust, while others are not so robust or
] are even very weak. The magnitude of these interactions depends on the extent of
f‘ their niche overlap. An ccological niche can be defined as the complete role that a
species plays in an ecosystem. The more overlap two species have, the stronger the
interaction will be. Two of these interactions between species are competition and

predator-prey relationships.

Introduction to Competifion

Everyone is familiar with competition. We compete for attention in families, for
grades in school, for jobs and promotions, for parking spaces, and on and on. Com-
petition is integral to most economic activity. Through competition in human societ-
ies, wages and prices are set; quantities and types of products manufactured are se-
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lected; businesses succeed or fail; and resources are distributed. Economic and social
competition may occur even in noncapitalist systems.

More broadly, competition is a basic characteristic of all communities, human
and nonhuman. It may occur within a population of the same species (intraspecific),
like the human species, or it may occur between populations of different species
(interspecific). Competitive interactions affect species distribution, community or-
ganization, and species evolution.

Simply speaking, competition is the struggle between individuals of a population
or between species for the same limiting resource. If one individual (species) re-
duces the availability of the resource to the other, we term that type of competition
exploitative, or resource depletion. This interaction is indirect and may involve
removal of the resource or denial of.living space. If there is direct interaction be-
tween individuals (species), where one interferes with or denies access 1o a resource,
we term that competition interference. In this form, there may be physical contests
for territory or resource. Interference may also, as in some plants, involve the pro-
duction of toxic chemicals. .

Modeling Compefi’rion

Sometimes two species are not eating each other but are competing for the same
limited food source. Far example, whitetip sharks (WTS) and blacktip sharks (BTS)
in an area might feed on the same kinds of fish in a year when the fish supply is low.

‘We anticipate that a large increase in one species, such as BTS, might have a detri-

mental effect on the ability of the other species, such as WTS, to obtain an adequate
amount of food and, therefore, to thrive. Also, we expect that superior hunting skills
of one species would diminish the food supply for the other species. As one species
grows, the other shrinks, and vice versa. -

In an unconstrained growth model (see Module 2.2, “Unconstrained Growth”),
which ignores competition and limiting factors, we consider a population’s (P) births
to be proportional to the number of individuals in the population (r,P) and its deaths
to follow a similar proportionality (r»P). Thus, in this model, the rate of change of
the population is dP/dt = r\P — r,P = (r, — r,)P, so that the solution is an exponential
function, P = Pe'n -,

However, with competition, a competing species has a negative impact on the
rate of change of a population. In this situation, we can model the number of deaths
of each species as being proportional to its population size and the population size of
the other species. Thus, for B being the population of BTS and W the population of
WTS, the number of deaths of each species is proportional to the product BW. More-
over, the constant of proportionality associated with this proportionality for one spe-
cies reflects competitive skills of the other species. (Projects explore various types of
competition.) Consequently, we have the following equations for the change in the
number of deaths of each species:

A(deaths of WTS) = wBW, where wis a WTS death proportionality constant
A(deaths of BTS) = bWB = bBW, where b is a BTS death proportionality constant
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Figure 4.1.1 Model diagram of competition of species

Equation Set 4.1.1

Some equations to accompany Figure 4.1 .1 with basic unit of time being 1 month

BTS_population(0) = 15

BTS_birth_fraction =}

BTS_births = BTS_birth_fraction * BTS_population

BTS_death_proportionality_constant = 0.20

BTS_deaths = (BTS_death_proportionality_constant * WTS_population) *
BTS_population

WTS_population(0) = 20

WTS_birth_fraction = |

WTS_births = WTS_population * WTS_birth_fraction

WTS_death_proportionality_constant = 0.27

WTS_deaths = (WTS_death_proportionality_constant % BTS_population) *
WTS_population

Figure 4.1.1 illustrates the interaction with the number of each species of shark af-
fecting the deaths of the other species. With the basic unit of time being a month,
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Equation Set 4.1.] gives some of the equations and constants, which in this case
models births as being unconstrained. The set of numbers Serve as an example and,
although realistic, do not fepresent any actual population. Typically, a computational
scientist uses actual field data to establish reasonable parameters for a model,

Quick Review Question 1

This question reflects on Step 2 of the modeling process—formulating a model—for
developing a model for competition. As before, let W be the number of WTS and B
the number of BTS. We simplify this model by assuming unconstrained births, A fter
completing this question and before continuing in the text, we suggest that you de-
velop a model for competition.

a. Give an equation for WTS births.
b. Give an equation for WTS deaths.

Quick Review Question 2

If all other parameters are equal and the WTS death proportionality constant (w) is
larger than the BTS death proportionality constant (5), which population should be
larger after a few time steps?

A, WTS B. BTS C. Impossible to determine

Note that in this hypothetical example, the death proportionality constants (0.2
and 0.27) are much smaller than the birth fractions (1 and 1). The former constants
are multiplied by product of the two populations, BW, potentially a very large num-
ber, while the later are multiplied by their respective populations, B or W. For birth
fractions of |, each type of shark gives birth to approximately one pup each month.
With BTS_population(0) being 15 and WTs _population(0) being 20, initial predic-
tions are for about 15 BTS and 20 WTS to be born in the first month, Should a death
proportionality constant for BTS or WTS also be 1, the rate of change of deaths for
that type of shark would initially be [ x 15 x 20 = 300 sharks/month; and the popu-
lation would quickly become extinct. Thus, we have the following rule of thumb.

- Rule of Thymb: ;A constant of proportionali y fora productofpopulanons o
. suchas BW, is frequefily at ledst dn‘order of magnitude (decimal -
- -point moved one place to the left) less thiin constant of propor-

tionality for ohe population, such as Bor W i
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With populations inhibited only by the competition for food, we might have a
situation like the one illustrated in Figure 4.1.2 and Table 4.1.1. In this case, the
WTS initially outnumber the BTS, However, the WTS death proportionality con-
stant (w=0.27) is larger than the BTS death proportionality constant (b = 0.20).
Early in the simulation, the population of both species decreases. Eventually, the
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WTS die out and the BTS thrive. The projects and exercises explore situations that
have different initial populations and constants of proportionality and., consequently,
different results.

population
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Figure 4.1.2  Graph of results of simulation from Figure 4.1.1, where the WTS death pro-
portionality constant (w) is 0.27, the BTS death proportionality constant (b) is 0.20, and time
(7} is in months

Table 4.1.1
Table of Results of Simulation from Figures 4.1.1 and 4.1.2 where
w=0.27and b=0.20

Time ( months) wTs BTS
0 20.00 15.00
| 6.57 5.37
2 4.69 4.84
3 3.08 6.00
4 0.99 10.83
5 0.02 27.43

Exercises

l. a. Write the differential equations for modeling competition with uncon-
strained growth for both populations.
b. Find all equilibrium solutions to these equations.
2. a. Write the differential equations for modeling competition with con-
strained growth for both populations.
b. Find all equilibrium solutions to these equations.
3. What would be the effect on each of the following of increased intraspecific
competition? Hint: Increased competition would be reflected in hi gher pop-
ulation densities.
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a. Mortality in terms of number of pines/acre

b. Fertility in terms of number of seeds/plant/m?

C. Average adult weight in terms of average adult bluegill weight per liter
of water

d. Rate of growth in terms of increase in mallard duckling weight per unit

of time

For additional projects, see Module 7.11, “Fueling Our Cells—Carbohydrate
Metabolism.”

1.

a. Using your system dynamics tool’s sharkCompetition file, which contains
a model for competing species, find values for the initial populations and
the constants of proportionality in which one population becomes
extinct,

b. Find values for which the two populations reach equilibrium.

¢. Discuss the results.

d. Adjust the model to have the populations constrained by carrying capaci-
ties (see Module 2.3, “Constrained Growth™).

e. Adjust the parameters several times obtaining different results.

f. Explain the models and discuss the results.

Argentine ants (Linepithema humile) are native to South America but have

been invading the temperate zone of North America from the turn of the

twentieth century. With its large and aggressive workers, Argentine ants are
generally able competitively to exclude many native ant species. This suc-
cess comes from the ant’s ability to use exploitive as well as interference

competitive mechanisms (Holway 1999).

a. Develop a model of exploitive competition for the Argentine ant versus a
native ant. The competitive factors include discovery time and rate of
recruitment. The Argentine ant might discover a food source faster and
attract other workers to the food source more quickly than the native ant.

b. Develop a model of interference competition for the Argentine ant versus a
native ant. The competitive factors include physical inhibition/removal
‘and chemical repellents. Argentine ants might fight off or remove native
ants from the food source, or they might use chemicals to repel them,

Model intraspecific competition. See Exercise 3 for examples. Discuss mor-

tality and rate of growth in response to increasing intraspecific competition.

Plants can produce chemicals that, when released to the soil, inhibit the

growth of other plants. These chemicals can act by inhibiting respiration,

photosynthesis, cell division, protein synthesis, mineral uptake, or altering
the function of membranes. For instance, sandhill rosemary (Ceratiola eri-
coides), an evergreen shrub found along the coastal plain of the southeastern

United States, produces ceratiolin. This chemical washes from the leaves

and degrades to hydrocinnamic acid, a compound that effectively inhibits

seed germination of many competing species (Hunter and Menges 2002).
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Assume that this chemical is increasingly effective at germination inhibi-
tion with increasing concentrations. Assume the highest concentration re-
leased to be 60 ppm (parts per million) and that concentration decreases lin-
early from the tips of the outermost leaves (for periods without rain).

a. Model inhibition of a competing plant species, where the effective con-
centrations of the toxin are between 20 and 60 ppm.

b. Model inhibition for this species with 2 cm rain per day. Set your own
decrease in concentration per cm of rain for your model.

Model the interference competition of titmice versus other birds at feeders.

6. Model an environment with two competing species of flowering plants—
species A and species B—and two essential resources—phosphorus and ni-
trogen. The constant renewal rate for each resource is 0.4 units/month. Ini-
tially, the availabilitics of phosphorus and nitrogen are 12 units and 28 units.
respectively. Each species has a starting population of 12 plants. At these

levels, the maximum progeny produced per plant for species A and B are 1.2

plants/month and 1.0 plants/month, respectively; while their per plant deaths

are 0.5 plants/month. Consider progeny production and deaths proportional
to the number of species individuals. For maximum births, the phosphorus

consumption amounts per plant for species A and B are 0.5/month and 0.25/

month, respectively, and the nitrogen consumption amounts per plant arc

0.25/month and 0.5/month, respectively. For fewer resources. the relative
amounts of phosphorus and nitrogen consumption and the birth rates are pro-
portionally smaller. Explain the model and discuss the results. Will this sce-

nario result in equilibrium (Tilman 1980)?

bl

Answers to Quick Review Questions

1. a. ¢W, where c is a birth rate
b. wBW or wWB, where w is a death proportionality constant
2. A. BTS, because a larger portion of the white tip sharks are dying
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Predator-Prey Model

Download

The text’s website has a Predator-Prey file, which contains the model of this mod-
ule, available for download for various system dynamics tools.

lnhoducﬂon'

One of the interspecific interactions (see Module 4.1, “Competition™) common to
biological communities is the predator-prey relationship. When one species
(predator) consumes another species (prey) while the latter is still living, the action
is predation. Predation might involve the consumption of a young squirrel by a
hawk, but examples also include tomato hornworms consuming tomato plant leaves
and a tapeworm feeding off its mammalian host. Predator-prey interactions are im-
portant influences on population levels and ecosystem energy flow.

One of the most interesting characteristics of this type of relationship is that both
predators and prey develop fascinating adaptations, which normally come about
over long periods of time. Predator adaptations usually involve better prey detection
and capture, whereas prey adaptations normally involve improved abilities to escape
and avoid detection.

So, let’s consider a 3/4-in. frog, commonly called a poison dart frog, We might
expect that such a small animal would, to avoid predation, come out only at night or
adopt some camouflaged coloration. However, this brazen creature forages for small
invertebrates during the day (prey may also be predators) and is brilliantly colored
(bright red, yellow, etc.). How might it manage then to avoid predation? The answer
lies in the skin of the frog, which contains toxic, alkaloid chemicals that cause pa-
ralysis and/or death in the predator. Over time, predators associate the coloration
with the toxic nature of the prey and, hence, avoid that prey. So the bright coloration
is termed warning, or aposematic, coloration.
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Lotka-Volterra Model

In the 1920s, mathematicians Vito Volterra and Alfred Lotka independently pro-
posed a model for populations of a predator species and its prey, such as hawk and
squirrel populations in a certain area. For simplicity, we assume that a hawk hunts
only squirrels and that no other animal eats squirrels. If the hawk’s only food source
is squirrel and the number of squirrels diminishes significantly, then scarcity of food
will result in starvation for some of the hawks. With reduced numbers of hawks, the
squirrel population should increase.

Quick Review Question 1

This question reficcts on the predator-prey situation before we begin the discussion.

a. Do predator-prey interactions have a direct impact on the births or deaths of
the prey?

b. Based on other interaction model of Module 4.1, we can model the prey
deaths as being directly proportional to what?

c. If we consider prey births as being unconstrained; we can model prey births
as being dircctly proportional to what?

d. Are predator-prey interactions advantageous or disadvantageous for
predators?

e. Based on other interaction models of Module 4.1, we can model predator
births as being directly proportional to what?

f. If we consider predator deaths as being unconstrained, we can model the
predator deaths as being directly proportional to what?

Let s be the number of squirrels in the area and / be the number of hawks. If no
hawks are present, the change in s from time 7 - At to time ¢ is as in the uncon-
strained model (see Module 2.2, “Unconstrained Growth and Decay”):

As = s() - s(t - Ar)
= (squirrel growth at time 1 - Af) * At
=k, * s(t - Ar) * At for constant &,

However, this prey’s population is reduced by an amount proportional to the product
of the number of hawks and the number of squirrels, /(7 - Af) * s(t — Ar). Thus, with
a proportionality constant k;, for this reduction, the change in the number of squirrels
from time 7 — At to time 7 is as follows:

As = s(f) - s(t = A
= (squirrel growth at time 7 — AN * At
= (k, * 5(t — A — ky * h(t — A1) * s(1 —A0) * At

for constants k, and k.

We can interpret the term k,, * h(r - AN * s(t — A) in a couple of ways. First,
h(t — Ar) * s(t — Ar) is the maximum number of distinct interactions of hawks with
squirrels. For example, for h(r — Ar)=3 hawks and s(r — Af) = 2 squirrels, (3)(2) =6
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possible pairings exist. The decrease in the number of squirrels is proportional to this
product, where the constant of proportionality, k,,, is related to the hunting ability of
the hawks and the survival ability of the squirrels. A second interpretation of &, *
h(t — Ar) *s(t - AP = (ky, * h(r — An) *s(z — Af) is that the size of the squirrel popula-
tion decreases in proportion to the size of the hawk population.

While the squirrel population decreases with more contacts between the predator
and prey, the hawk population increases. Moreover, the death rate of hawks is pro-
portional to the number of hawks. Thus, the change in the hawk population from
time 7 — Af to time ¢ is as follows:

Ah = h(t) - h(t - Ar)
= (hawk growth at time 1 - Ar) * At
= (kg * s(t - A1 ¥t = A1) =k, * h(t - AD) * At

for constants £, and £,. Although the deaths of the squirrels and the births of the
hawks are both proportional to the product of the number of possible interactions of
the two populations, their constants of proportionality, k,, and k., respectively, are
probably different. For instance, 2% of the possible interactions might result in the
death of a squirrel, while only 1% of the possible interactions might contribute to the
birth of a hawk, ,

We can express the predator-prey model, known as the Lotka-Volterra model,
as the following pair of difference equations for the change in prey (here, change in
the squirrel population, As) and change in predator (here, change in the hawk popu-
lation, Ah) from time ¢ — At to time £:

As = (k. * s(t = At) ~ ki * h(r — An)* s(1 - An) * At (1
Al = (kg * s(t =~ An) * h(t — A1)~ ky * h(t — An) * At

or as the following pair of differential equations:

i{:-Y-=/‘s‘5'—/'f,”hs
dr (2)
% =k,sh—k h

Figure 4.2.1 contains a diagram for the predator-prey model with the prey population
affecting the number of predator births and the predator population influencing the
number of prey deaths.

Quick Review Question 2

Consider the following Lotka-Volterra difference equations:
Ax = (2 * x(t - A1) - 0.02 * y(r - Ar) * x(t — A1) * At with x(0) = 100
Ay =(0.01 *x(t — AN *y(r— AN - .06 * y(1 — Ar) ) * At with y(0) =15

a. Which equation (Ax, Ay, both, or neither) models the change in predator
population?
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Figure 4.2.1 Predator-prey diagram

! For each of the following questions, indicate the appropriate answer from the fol-
lowing choices:

7 A. 2 B. 0.02 C.-002 = D. 00l
,) E. 1.06 F. -1.06 G. 100 H. 15

b Which number represents the predator birth fraction?
. Which number represents the prey birth fraction?
d Which number represents the predator death proportionality constant?
e. Which number represents the prey death proportionality constant?
f. What is the initial number of predators?
g. What is the initial number of prey?

S

| Particular Situations

b H:storlcal Note - Durmg the Cultural Revolunon in Chma (1958—1960),

) : - Chairman Mao Zedong ¢ decreed that all sparrows be killed because

; 'they ate too much of the crops and they seemed to be only for plea-

~ sure anyway. ‘With reduction in its main predator, the insect popula- .
f ~tion mcreased dramatlcally The insects’ destroyed much more of

) ' the crops than the birds ever-did. Consequently, the Chinese re-

i o versed the demsmn that caused the 1mbalance (PBS 2002)
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Returning to the example of the hawks and squirrels, some of the model’s equa-
tions and constants appear in Equation Set 4.2.1. In that example, prey_birth_frac-
tion (k) =2, prey_death_proportionality_constant (k) =0.01, predator_birth_
Sraction (ky)=0.01, predator_death _proportionality_constant (k) = 1.06, the
initial prey_population (sy) = 100, and the initial predator _population (hy) = 15. As
suggested in the “Rule of Thumb” in Module 4.1, “Competition,” the proportionality
constants (0.01 and 0.01) for products, which involve interactions, are at least an
order of magnitude less than the proportionality constants (2 and 1.06) for single
populations.

-___. E——— .
e e ..

Equation Set 4.2.1

; Some of the equations and constants for model in Figure 4.2.1:

.

predator_population(0) = 15

predator_birth_fraction = 0.01

predator_births = (predator_birth_fraction * prey_population) * predator_pop-
wlation

predator_death_proportionality_constant = 1.06

predator_deaths = predator_death_proportionality_constant * predator_popu-
lation

prev_population(0) = 100

prev_birth_fraction =2

prey_births = prey_birth_fraction * prey_population

prey_death_proportionality_constant = 0.02

prey_deaths = (prey_death_proportionality_constant * predator_population) *
prey_population

Table 4.2.1 and Figure 4.2.2 show the varying prey and predator populations
as time advances through 12 months. Shortly after the squirrel, or prey, population

Table 4.2.1
‘Table of Prey and Predator Populations over 12-month period
Months Prey Population Predator Population
0.000 100.00 15.00
1.000 449.58 62.00
2.000 30.43 280.24
' . 3.000 5.63 108.55
! 4.000 10.54 40.32
? 5.000 45.61 17.59
6.000 244.25 19.97
7.000 215.76 298.60
8.000 7.91 173.18
9.000 6.52 63.69
| 10.000 21.30 24.81
11.000 109.68 14.61
p Final 470.44 74.28
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Figure 4.2.2  Graph of populations versus time in months

increases, the hawk, or predator, population does likewisc. As the predators kill off
their food supply, the number of predators decreases. Then, the cyclic process starts

OVCr.

Quick Review Question 3

To the nearest whole number, what is the period (in months) of the cyclic functions

for population in Figure 4.2.27

Figure 4.2.3 shows the graph of a solution to the difference or differential equa-
tions with the prey population along the horizontal axis and the predator population
along the vertical axis. With the initial predator population being 15 and prey popu-
lation being 100, the plot starts at the bottom toward the left and proceeds counter-
clockwise as time progresses. Initially, with few predators endangering them. the

Predators
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—
' 375 s00

5 250

[\

1

Figure 4.2.3  Graph of predator population versus prey population
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Figure 4.2.4  Several solutions to the predator-prey model using different initial conditions
and the coloration shown

Predator Prey Color of Graph
15 100 black

75 125 gray

135 150 dark color
195 175 light color

prey population reaches a maximum of about 475 when the predator population is
about 100. Then, with the graph developing to the left and up, we see that the prey
population starts decreasing as the predator population continues to increase with the
abundant supply of its food, the prey. At the graph’s high point, about (107, 322),
with approximately 107 prey, the predator population achieves a maximum of 322
individuals. That same number of predators, about 107, occurs toward the bottom of
the graph when the prey only number about 15. After a maximum, the number of
predators falls off rapidly because of the limited food supply, and the number of prey
decreases as well. Eventually, on the bottom part of the graph, with the diminished
number of predators, the prey are able to stage a comeback, and the cyclical process
begins again. Figure 4.2.4 illustrates several such solutions employing different ini-
tial conditions.

Quick Review Question 4

The following are the Lotka-Volterra differential equations for the particular model
we have been considering:

ds/dt = 25 — 0.02hs
dh/dr = 0.01sh - 1.06h
with $(0) = 100 and 1(0) = 15.
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a. Indicate all that must be true for the system to be in equilibrium: ds/dr =0;
s = 0: dh/dr = 0; i = 05 all of these; none of these.

b. A trivial solution for equilibrium is s = 0 and /1 = 0. Find a nontrivial solu-
tion, where s # O and /1 # 0.

Exercises

1. Give two sets of Lotka-Volterra equations with all coefficients being differ-
ent that represent a system in equilibrium, such that the number of prey is
always 3000 and the number of predators is always 500.

2. Write the differential or difference equations for a predator-prey model where
there is a carrying capacity M for the predator. See differential equation 1 or
difference equation 2 in Module 2.3, “Constrained Growth.”

3. The blue whale, which can grow to 30 m in length, is a baleen whale whose
favorite food is Antarctic krill, a small shrimp that is about 5 cm long. The
difference equation for the change in the krill population is similar to that for
As in (1), except the birth term must be logistic (see Equation 2 in Module
2.3, “Constrained Growth™). The difference equation for the change in the
number of blue whales is a logistic equation, except that the carrying capac-
ity is not a constant but is proportional to the krill population. Write the dif-
ference equations to model this system (Greenwood 1983)

Projects

For additional projects, see Module 7.11, “Fueling Our Cells—Carbohydrate Me-
tabolism™;, Module 7.12, “Mercury Pollution—Getting on Our Nerves”; Module
7.13, “Managing to Eat—What's the Catch?”; Module 7.14, “Control Issues: The
Operon Model”; and Module 7.15, “Troubling Signals: Colon Cancer. "

1. Develop a model where the prey birth fraction (k) is periodic, such as
follows:

k,=f+ acos(p x1), where f, a, and p are constants;
O<a<f 0<f andtistime.

Note that « is the amplitude; the period is 27/p; and addition of f raises the
graph of @ cos(pr) by the amount f. (For a more detailed discussion, see the
section “Trigonometric Functions” of Module 8.2, “Function Tutorial.”) Have
a table of population numbers, a graph of populations versus time, and a
graph of one population versus the other. Determine values for the parame-
ters so that the system is periodic, and then determine values where the sys-
tem is chaotic. Discuss your results.

2. Using system dynamics software or a computer program, model the preda-
tor-prey example, including crop consumption discussed in the Historical
Note about the Chinese Cultural Revolution.



